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1 Introduction

In 1989 the COBE experiment fielded two instruments that would revolutionize the study
of the cosmic microwave background (CMB): the differential microwave radiometer (DMR),
which provided the first measurement of the angular power spectrum [1]; and the far-infrared
absolute spectrophotometer (FIRAS), which measured its frequency spectrum and showed it
to be blackbody to exquisite precision [2]. Since then DMR has been succeeded by a large
number of experiments that have improved the angular power spectrum by several orders of
magnitude both in sensitivity and angular resolution [3–7]. However, the nearly 30 year old
FIRAS result remains our best measurement of the CMB frequency spectrum.

The Primordial Inflation Explorer (PIXIE) is a proposed successor to FIRAS, with
∼ 1000 times higher sensitivity, polarization support, 4 times higher angular resolution and
reduced systematics. It would provide 1.6◦ FWHM full-sky maps in Stokes I, Q and U
parameters in 480 frequency channels from 15 GHz to 7 THz (though it would be noise
dominated beyond ca. 4 THz) to a depth of 70nK◦ (that is, a square degree variance of
1400 nK2) after 4 years of integration [8]. This corresponds to providing a frequency spectrum
10 times more sensitive than FIRAS CMB monopole spectrum in each 1◦ pixel of the sky.
That is sufficient to constrain the spectral distortion parameters to µ < 4 · 10−7 (probing the
ultra-small-scale primordial power spectrum and exotic pre-recombination particle decay) [9]
and y < 2 · 10−9; to measure the optical depth at reionization to σ(τ) = 0.002 (essential for
getting a robust neutrino mass measurement); and to measure the tensor-to-scalar ratio to
σ(r) < 0.001 [10]. And crucially, PIXIE’s dense and broad frequency coverage would allow
for robust foreground separation, especially dust.

To make use of these huge increases in sensitivity, a corresponding reduction in system-
atic errors is needed. PIXIE’s systematics were studied in detail by [11], who concluded that
any residual errors after corrections would be at the sub nK level, far below the instrumental
noise. However, so far no end-to-end simulations of PIXIE have been performed.

In this paper we present a python-based time-ordered data simulator and map-maker
for PIXIE, based on the mission concept proposed to NASA in 2016, and use them to make
PIXIE spectral sky maps. We then use this framework to study the impact of some of the
relevant systematic effects.

2 The PIXIE Fourier transform spectrometer

Unlike most CMB experiments, but like FIRAS, PIXIE does not use a large number of
detectors and frequency filters to measure the frequency spectrum. Instead it splits the
incoming radiation into two paths, introduces a variable delay between them, and then lets
them interfere with each other. For each delay used, this results in a measurement of the
radiation’s autocorrelation function, which once mapped out can be Fourier transformed to
recover the frequency spectrum. This indirect way of measuring the spectrum is called a
Fourier transform spectrometer (FTS).

To improve the dynamic range PIXIE uses two FTSes (labeled “A” and “B” in the fol-
lowing) each with its own opening (“barrel”) towards either the sky or a reference blackbody.
The two barrels are collimated, and the interferometers are coupled in a total-intensity-nulling
configuration. The situation is illustrated in figure 1.

The barrels are operated in one of two modes: in single-barrel mode one barrel is exposed
to the sky while the other is covered by a 2.725 K calibrator [8]. This cancels the contribution
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Figure 1. PIXIE optics example. Monochromatic pure vertical polarization (red) enters barrel A
at the left side of the figure. It passes through the vertical polarizer A unmolested, but is split
into two different linear combinations of vertical and horizontal (blue) polarization at the diagonal
polarizer B. It then encounters the moving mirror, which in this example slightly retards the top
optical path. The rays are combined in the next diagonal polarizer C, but due to the phase delay the
horizontal polarization does not fully cancel. The vertical polarization is correspondingly lower. The
final vertical polarizer (D) sends the vertical/horizontal polarization to horn L/R respectively. If the
mirror displacement were zero, all radiation entering barrel A/B would end up in horn L/R.

from the CMB monopole, leaving the 3 orders of magnitude smaller dipole as the dominant
signal. In double-barrel mode both barrels are exposed to the sky. In this case the entire
total intensity signal is canceled, and only the much weaker polarization signal is left. In
either case, the nulling greatly reduces the amplitude of the modulated signal that reaches
the detectors. Many systematic effects are proportional to the total signal, and are therefore
similarly reduced by this technique.

To be able to simulate PIXIE observations, we need to know how the power incident on
its detectors relates to the incoming radiation. This was done by [8], but is repeated here in
more detail for convenience.

We can expand the electric field EA(t), EB(t) that enters PIXIE’s barrels in terms of
Jones vectors as

EA(t) = Re

∫ ∞
0

dω
(
ẼAx (ω)ex + ẼAy (ω)ey

)
ei(kz−ωt)

EB(t) = Re

∫ ∞
0

dω
(
ẼBx (ω)ex + ẼBy (ω)ey

)
ei(kz−ωt) (2.1)

where ω is the angular frequency of the radiaton and ẼA(ω) and ẼB(ω) are (complex) Jones
vectors at that angular frequency.

After entering the barrels the light encounters polarizer A, which lets through vertical
polarization and reflects horizontal.1 After this, the Jones vectors in left (A) and right (B)

1Before this it encounters the primary mirror, folding flats, secondary mirror, and transfer mirror 1, but
these lead to the same phase shifts on both the A and B side optical paths, so they can be neglected.
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shafts are

ẼA1 = ẼAx ex + ẼBy ey ẼB1 = ẼBx ex + ẼAy ey (2.2)

After passing through the diagonal polarizer B, we have

ẼA2 =
1√
2

[ẼAx + ẼBy ]ea +
1√
2

[−ẼBx + ẼAy ]eb

ẼB2 =
1√
2

[ẼBx + ẼAy ]ea +
1√
2

[−ẼAx + ẼBy ]eb (2.3)

where ea ≡ 1√
2
[ex + ey] and eb ≡ 1√

2
[−ex + ey]. The dihedral mirror then imparts a path

length difference between the two sides, advancing A by 1
2∆t and retarding B by 1

2∆t, which

is achieved by multiplying A by δ+ = e−
1
2
iω∆t and B by δ− = e

1
2
iω∆t:

ẼA3 =
δ+

√
2

[ẼAx + ẼBy ]ea +
δ+

√
2

[−ẼBx + ẼAy ]eb

ẼB3 =
δ−√

2
[ẼBx + ẼAy ]ea +

δ−√
2

[−ẼAx + ẼBy ]eb (2.4)

Polarizer C is also diagonal, resulting in

ẼA4 =
δ+

√
2

[ẼAx + ẼBy ]ea +
δ−√

2
[−ẼAx + ẼBy ]eb

ẼB4 =
δ−√

2
[ẼBx + ẼAy ]ea +

δ+

√
2

[−ẼBx + ẼAy ]eb (2.5)

And the final polarizer D is vertical. The output of this enters the left (L) and right (R)
feedhorns.

ẼL = ẼA5

=
1

2

[
δ+(ẼAx + ẼBy ) + δ−(ẼAx − ẼBy )

]
ex +

1

2

[
δ−(ẼBx + ẼAy ) + δ+(−ẼBx + ẼAy )

]
ey

=
[
ẼAx cos(ω∆t/2)− iẼBy sin(ω∆t/2)

]
ex +

[
ẼAy cos(ω∆t/2) + iẼBx sin(ω∆t/2)

]
ey (2.6)

ẼR = ẼB5

=
1

2

[
δ−(ẼBx + ẼAy ) + δ+(ẼBx − ẼAy )

]
ex +

1

2

[
δ+(ẼAx + ẼBy ) + δ−(−ẼAx + ẼBy )

]
ey

=
[
ẼBx cos(ω∆t/2) + iẼAy sin(ω∆t/2)

]
ex +

[
ẼBy cos(ω∆t/2)− iẼAx sin(ω∆t/2)

]
ey (2.7)

2.1 Stokes parameters

After passing through all this, the light enters the feedhorns and hits the detectors. The
power deposited here can be decomposed into Stokes parameters2

Ĩ = 〈|Ẽx|2〉+ 〈|Ẽy|2〉 Q̃ = 〈|Ẽx|2〉 − 〈|Ẽy|2〉 Ũ = 2 Re〈ẼxẼ∗y〉 Ṽ = −2 Im〈ẼxẼ∗y〉 (2.8)

2The quantities with tildes are for a single plane wave. The full Stokes parameters are obtained by
integrating these. E.g. I(∆t) =

∫∞
0
Ĩ(ω)dω.
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so we need to evaluate Pxx = 〈|Ẽx|2〉, Pyy = 〈|Ẽy|2〉 and Pxy = 〈ẼxẼ∗y〉. For the left horn3

we get

PLxx = 〈ẼLx ẼL∗x 〉

=
1

2

[
1 + cos(ω∆t)

]
〈ẼAx ẼA∗x 〉+

1

2

[
1− cos(ω∆t)

]
〈ẼBy ẼB∗y 〉

− i

2
〈ẼAx ẼB∗y + ẼA∗x ẼBy 〉 sin(ω∆t) (2.9)

=
1

4

[
ĨA+ĨB+Q̃A−Q̃B+(ĨA−ĨB+Q̃A+Q̃B) cos(ω∆t)− 4 Im(ẼAx Ẽ

B∗
y ) sin(ω∆t)

]
PLyy =

1

4

[
ĨB+ĨA+Q̃B−Q̃A−(ĨB−ĨA+Q̃B+Q̃A) cos(ω∆t)− 4 Im〈ẼBx ẼA∗y 〉 sin(ω∆t)

]
(2.10)

PLxy =
1

4

[
ŨA − ŨB − iṼ A − iṼ B + (ŨA + ŨB − iṼ A + iṼ B) cos(ω∆t)

+ 2i〈ẼAx ẼB∗x + ẼBy Ẽ
A∗
y 〉 sin(ω∆t) (2.11)

Hence

ĨL =
1

2

[
ĨA + ĨB + (ĨA − ĨB) cos(ω∆t)− 2 Im〈ẼAx ẼB∗y + ẼBx Ẽ

A∗
y 〉 sin(ω∆t)

]
Q̃L =

1

2

[
Q̃A − Q̃B + (Q̃A + Q̃B) cos(ω∆t)− 2 Im〈ẼAx ẼB∗y − ẼBx ẼA∗y 〉 sin(ω∆t)

]
ŨL =

1

2

[
ŨA − ŨB + (ŨA + ŨB) cos(ω∆t)− 2 Im〈ẼAx ẼB∗x + ẼBy Ẽ

A∗
y 〉 sin(ω∆t)

]
Ṽ L =

1

2

[
Ṽ A + Ṽ B + (Ṽ A − Ṽ B) cos(ω∆t)− 2 Re〈ẼAx ẼB∗x + ẼBy Ẽ

A∗
y 〉 sin(ω∆t)

]
(2.12)

The value of the barrel cross-terms depends on whether PIXIE is in single or double barrel
mode.

Single barrel mode. In single barrel mode only one barrel is exposed to the sky; the
other one observes a static calibrator object. The light entering the two barrels is therefore
uncorrelated, and all the cross-terms disappear.

ĨL =
1

2

[
ĨA + ĨB + (ĨA − ĨB) cos(ω∆t)

]
Q̃L =

1

2

[
Q̃A − Q̃B + (Q̃A + Q̃B) cos(ω∆t)

]
Ṽ L =

1

2

[
Ṽ A + Ṽ B + (Ṽ A − Ṽ B) cos(ω∆t)

]
ŨL =

1

2

[
ŨA − ŨB + (ŨA + ŨB) cos(ω∆t)

]
(2.13)

Double barrel mode. In double barrel mode the two barrels are both coaligned and ex-
posed to the sky, so they observe the same wavefront entering. As PIXIE’s angular resolution
is not infinite it is sensitive to wavefronts that are off-axis by a few degrees, causing the two
barrels to act as a 2-element spatial interferometer. Light arriving from a single direction n̂
will hit Barrel B a time τ = n̂ ·b/c before barrel A, where b is the distance vector from barrel
A to barrel B, and c is the speed of light (see [11, appendix]). So in this case ẼB = γẼA

with γ = e−iωτ .

ĨL = ĨA + Ṽ A cos(ωτ) sin(ω∆t) Q̃L = Q̃A cos(ω∆t)− ŨA sin(ωτ) sin(ω∆t)

Ṽ L = Ṽ A − IA cos(ωτ) sin(ω∆t) ŨL = ŨA cos(ω∆t)− Q̃A sin(ωτ) sin(ω∆t) (2.14)

3The right horn follows by symmetry: (L,A,B)↔ (R,B,A).
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The total signal will be the contribution from all directions integrated over the barrel beam.
The cross terms (those proportional to sin(ω∆t) are antisymmetric with respect to the base-
line b separating the two barrels, making it cancel to first order when integrated over the
symmetric beam. Furthermore, the sin(ω∆t) dependence of any residual is anti-symmetric
with respect to the mirror stroke, forcing these terms into the (unphysical) imaginary part of
the frequency maps. This imaginary part contains none of the real signal and would usually
be discarded, but can be inspected as a test for systematic errors.

If the barrels are not perfectly collimated, or if they have asymmetric sidelobes or
different beam size, then the situation will be more complicated, as only part of the radiation
that enters the barrels will be correlated.

These cross terms are not implemented in the current version of the simulator, but for
the reasons above we do not expect this to impact our results meaningfully.

In the absence of the cross terms terms, the signal in double barrel mode is identical
to that of single barrel mode with (IA, QA, UA, V A) = (IB, QB, UB, V B), so we can use the
single barrel eqs. (2.13) in the following without further loss of generality.

A fuller treatment of the effects of beam asymmetries can be found in [12].

2.2 Detector response

PIXIE has an x and y-oriented detector in each horn. The power deposited on each of these is

sLx (∆t) =
1

4

∫ ∞
0

(
ĨA + ĨB + Q̃A − Q̃B + (ĨA − ĨB + Q̃A + Q̃B) cos(ω∆t)

)
dω

=
1

4

[
IA + IB +QA −QB

]
0

+
1

4

[
IA − IB +QA +QB

]
∆t

sLy (∆t) =
1

4

[
IB + IA +QB −QA

]
0
− 1

4

[
IB − IA +QB +QA

]
∆t

sRx (∆t) =
1

4

[
IB + IA +QB −QA

]
0

+
1

4

[
IB − IA +QB +QA

]
∆t

sRy (∆t) =
1

4

[
IA + IB +QA −QB

]
0
− 1

4

[
IA − IB +QA +QB

]
∆t

(2.15)

where all the quantities depend on ∆t and potentially τ , and where these are total Stokes
parameters, not the per-frequency ones, e.g. I =

∫∞
0 Ĩ(ω)dω, and [. . .]∆t means that the

quantities within should be evaluated at the time delay in the subscript.
Combining this with the effect of PIXIE’s pointing on the sky, we can express the total

detector response as a function of the sky autocorrelation functions.

sdet(t) =

Detector response︷ ︸︸ ︷
1

2


eI + eQ 0
eI − eQ 0

0 eI + eQ
0 eI − eQ

 ·
Horn response︷ ︸︸ ︷

1

2

[
1 M 1 −M
M 1 −M 1

]
·

Barrel signal︷ ︸︸ ︷
R1t · ssky

A (p̂1t, 0)

R2t · ssky
B (p̂2t, 0)

R1t · ssky
A (p̂1t,∆t)

R2t · ssky
B (p̂2t,∆t)

 (2.16)

sdet(t) = [sLx , s
L
y , s

R
x , s

R
y ] is the vector of detector responses at time t, p̂bt is the sky pointing of

barrel b at time t, ssky
b (p̂,∆t) is the beam-smoothed, frequency-weighted sky autocorrelation

function Stokes vectors for the given pointing and time delay as seen by barrel b (different
barrels can see different skies because one barrel may be covered by a blackbody calibrator),
Rbt is a matrix that rotates the polarization basis from sky to instrument coordinates, M =

– 6 –
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diag(1,−1,−1, 1) is a matrix that flips the sign of linear polarization, and eI = (1, 0, 0, 0)
and eQ = (0, 1, 0, 0) are Stokes I and Q basis vectors. PIXIE’s interferometry shows up in
two ways here: the sky autocorrelation function, rather than just its intensity, is what is
measured; and the barrel signal differencing in the horn response.

2.3 Readout

Of course, a real instrument does not read out data with infinite time resolution, but as a set
of discrete samples, each of which is noisy. The PIXIE hardware will also apply a bandpass
filter to avoid aliasing and suppress low-frequency noise. Taking this into account, we model
the time-ordered data as

di = Bij

∫ tj+∆t/2

tj−∆t/2
sdet(t)dt+ ni (2.17)

where i is the sample index, B is the bandpass filter, ∆t is the sample interval and ni is the
noise in sample i. We implement this sample integral by using Gaussian quadrature with
Nsub sub-samples, with a typical value of Nsub being 9.

For the bandpass filter we used a Butterworth bandpass filter,

B(f) =

(
1 +

[
f

0.01Hz

]−5)−1(
1 +

[
f

100Hz

]5)−1

. (2.18)

2.4 Frequency response

PIXIE’s frequency response is limited above 1–2 THz by the roughness of the mirrors. Scat-
tering from the mirrors provides a gradual decrease in the coupling of the detectors to the sky.
The resulting apodized frequency response smoothly band-limits the signal to avoid aliasing
from frequencies about the instrument’s Nyquist frequency of 7 THz. Dispersion within the
FTS from the finite spread of angles within the beam washes out the fringe amplitude at
comparable frequencies. Synthesized channels at frequencies above ∼6 THz thus contain
noise but no signal, providing a convenient check of the instrument noise.

We here model the total frequency response as ρ(ν) = e−[ ν
1.5THz ]

2

.

3 Pointing

PIXIE would orbit at the Sun-Earth L2 point, placing it in the ecliptic, with a heliocentric
ecliptic latitude b = 0 and longitude l = l0 + 360◦ t−t0Torbit

4 with Torbit = 1 year. In addition to

this orbital motion, PIXIE also scans great circles5 perpendicular to the direction towards
the sun, with a linearly increasing scan angle αscan = αscan,0 + 360◦ t−t0Tscan

. To form an actual
great circle the scan axis does not move continuously with b, but updates in steps after each

circle has been completed: αorbit = l0 + 360◦
⌊
t−t0
Tscan

⌋
Tscan
Torbit

. On top of this scanning motion,

the telescope also spins rapidly around the barrel boresight in order to modulate the observed

4We’re ignoring the orbital eccentricity here for simplicity, but nothing in the simulation or mapmaking
relies on the longitude changing at a constant rate, so it would be trivial to add support for eccentricity.

5Getting sufficient sun shielding might require the opening angle of the scan to be smaller than 180◦.
This would make the scans small circles instead. This would result in 1. the ecliptic poles no longer being
covered, and 2. the add to sky operation in section 6.5 would be somewhat more complicated. Aside from
that, nothing changes.
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Figure 2. Left : the PIXIE observatory, showing the spin and scan axes relative to the barrel beams
and the direction towards the sun. Right : PIXIE would be located at the Sun-Earth L2 point, and
would scan in great circles while pointing 90◦ away from the Sun, adjusting its orientation stepwise
between each scan. This results in the whole sky being covered every 6 months.

polarization and reject systematics: αspin = αspin,0+360◦ t−t0Tspin
. And finally, while it is spinning

the dihedral mirror sweeps backwards and forwards at constant speed, varying the path length

time difference in the Fourier transform spectrometer by ∆t = Adelaytriangle
(

t−t0
Tstroke

)
, with

Adelay = 10.40303mm/c for the purposes of this paper, but varying somewhat by observing
mode in the real experiment, and with triangle(x) being the triangle wave with period 1,
mean 0 and a zero crossing at x = 0.

To allow PIXIE mapmaking to use fast Fourier transform methods, the stroke, spin
and scan periods will be synchronized such that there is an integer number of strokes in a
spin, and an integer number of spins in a scan. We will use the values Tspin = 60s, Tstroke =
Tspin/8 = 7.5 sec, Tscan = 384Tspin = 384 min here. The time-ordered data (TOD) simulator
purposefully does not depend on integer ratios to be able to investigate the consequences of
small deviations from integer ratios.

To summarize, PIXIE moves in four different ways: it orbits with a 1 year period; it
scans in great circles perpendicular to the direction towards the sun with a 384 minute period;
it spins around the boresight with a 1 minute period; and it strokes the FTS mirror with a
7.5 second period. Aside from the orbital period these numbers are subject to change, but
the period ratios will be kept at integer numbers.

In order to speed up our simulations we will modify the scanning pattern we simulate
in one important respect. The actual L2 orbital period given above results in about 1370
scans per orbit, which results in 7.6 scans per PIXIE beam FWHM on the equator after half
an orbit. We avoid this oversampling by simulating a faster Torbit = 384Tscan.

A barrel-to-sky rotation matrix that implements this pointing model is

Rtot(b, t) = Rorient(t)Rbarrel(b) (3.1)

Rorient(t) = Rz
(
αorbit(t)

)
Ry

(
π

2
− αeclip

)
Rz
(
αscan(t)

)
Ry

(
π

2
− αopen

)
Rz
(
αspin(t)

)
(3.2)

Rbarrel(b) = Rz
(
∆φ(b)

)
Ry
(
∆θ(b)

)
Rz
(
∆ψ(b)

)
(3.3)
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Here Rbarrel(b) represents the orientation of barrel b relative to the spacecraft. Fiducially
Rbarrel = 1 for both barrels, but we include this rotation to be able to support misaligned
barrels or more complicated beams. Rorient(t) represents PIXIE’s orientation in space at time
t, and in addition to the angles described above includes αeclip and αopen, which represent
the offset of PIXIE’s orbital plane from the ecliptic and the opening angle offset (to support
non-great-circle scans), both of which are fiducially 0. Ry(θ) and Rz(θ) are rotations around
the y and z axes by an angle θ.6

Rtot encodes both the sky coordinates and polarization rotation,

xi = Rtot,xi yi = Rtot,yi pi ≡ zi = Rtot,zi (3.4)

l = tan−1(py/px) b = tan−1

(
pz√
p2
x + p2

y

)
γ = tan−1

(
xz

pyxx − pxxy

)
. (3.5)

with all the above being a function of the barrel index and time. p̂ = (px, py, pz) is the pointing
vector and γ is the polarization basis rotation, and corresponds to a Stokes rotation matrix

Rstok =


1 0 0 0
0 cos(2γ) − sin(2γ) 0
0 sin(2γ) cos(2γ) 0
0 0 0 1

 (3.6)

4 Evaluating the sky autocorrelation function at the observed location

As PIXIE observes the sky it mesures the autocorrelation function of the radiation coming
from the points it scans past. To simulate the PIXIE signal we therefore need to be able to
evaluate the I, Q and U autocorrelation functions7 at an arbitrary point p̂ on the sky for an
arbitrary phase delay ∆t for each component that makes up the sky (CMB, dust, etc.).

4.1 Precomputing the autocorrelation function as a data cube

A straightforward and general way of doing this would be to precompute the full-sky auto-
correlation function:

1. Evaluate the full-sky spectrum at equi-spaced frequencies

2. Apply any frequency-dependent beam to each frequency map and scale each frequency
by the instrument’s frequency response.

3. Fourier transform the result to get a (pixelized version of) the full-sky autocorrela-
tion function.

4. Apply any mirror-position-dependent beam or response to each delay in the result.

To read off the value at a general (p̂,∆t) one would then do an interpolated lookup in this
Npix by Ndelay data cube. This approach has the advantage of being able to handle both
frequency- and delay-dependent beams, which are otherwise hard to implement.

6In ecliptic coordinates z represents the zenith and x the zero longitude direction. In barrel coordinates,
z represents the fiducial barrel pointing.

7We’re ignoring V polarization here. See section 2.1.
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However, it also has some important limitations. Because it stores the full spectrum/au-
tocorrelation function in each pixel, its memory requirements scale poorly with resolution.
This makes it impractical to investigate the effect of sub-resolution features (both spectrally
and spatially) - to do so would require the data cube to be pixelized at many times higher
resolution than the PIXIE output map, which would make the memory requirements of this
approach prohibitively high. For example, for 0.1◦ spatial resolution and 5000 frequency
bins, storing the full-sky autocorrelation function would need about 700 GB of RAM.

We will therefore save the data cube approach for a future investigation of the effects of
frequency- and delay-dependent beams, and use an approach that allows for high-resolution
simulations in this paper.

4.2 Other approaches

If one assumes a frequency-independent beam, which should be a good approximation for
PIXIE, and if the spectrum can be written as a linear sum of a smaller number of spatial
templates, then it’s sufficient to apply the beam to those templates rather than the spectrum
itself. This decouples the spatial and spectral dimensions, making it possible to evaluate the
spectrum in one pixel independently of the rest of the sky.

With this, we could imagine the following approach: for each sample, interpolate the
spectrum parameters at p̂, then evaluate the whole spectrum, apply the frequency response,
Fourier transform it, and interpolate the value for ∆t. In our example above, this would
reduce the RAM requirements by a factor of 5000. But it would introduce another prohibitive
cost: the need to evaluate the spectrum at thousands of frequencies and Fourier transform
these for every sample in the TOD.8

4.3 Autocorrelation by Taylor expansion

In the end, we went for a Taylor expansion approach: the autocorrelation function is evaluated
as a perturbation around a different but similar precomputed autocorrelation function. This
is done differently for each sky component.

4.3.1 CMB

Taking into account the instrument’s frequency response ρ(ν) (see section 2.4), PIXIE ob-
serves the CMB with the spectrum

ICMB
ν,I (p̂, ν) = ρ(ν)Bν(ν, T (p̂)) =

2hν3ρ(ν)

c2

1

e
hν

kBT (p̂) − 1
. (4.1)

Here the I subscript indicates the Stokes intensity parameter, and T (p̂) is the CMB tempera-
ture at pointing p̂. kB and h are the Boltzmann and Planck constants respectively. Including
the Doppler dipole, T only has a contrast of order 10−3, so a Taylor expansion in T will
converge rapidly. Our goal is < 10−9 relative error, so an expansion to 3rd order, which

8A hybrid approach between these two would be to precompute the autocorrelation function for a chunk
of the sky around the current sample, and reuse that for subsequent samples until a sample falls outside
the chunk, and then precompute a new chunk. We investigated this in the hopes of being able to support
frequency-dependent beams, but found that edge effects and the flat-sky-approximation needed to perform
beam-smoothing on a small patch did not result in the required accuracy. This may still be a good approach
for frequency-independent beam simulations, though.
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should give order 10−12 error, should be sufficient. The expansion is

ICMB
ν,I (p̂, ν) = f0(ν) + f1(ν)∆T +

1

2
f2(ν)∆T 2 +

1

6
f3(ν)∆T 3 (4.2)

where

f0 = p(g0 − 1)−1 g0 = ea/T0

f1 = pf2
0 g1 g1 = −g0a/T

2
0

f2 = p(−2f0f1g1 − f2
0 g2) g2 = a(2g0 − T0g1)/T 3

0

f3 = p(−2f2
1 g1 − 2f0f2g1 − 4f0f1g2 − f2

0 g3) g3 = −(3/T0 + a/T 2
0 )g2 + ag1/T

3
0

and where p = 2hν3ρ(ν)
c2

, a = hν/kB and ∆T (p̂) = T (p̂)− T0 with T0 = 2.725K.

The autocorrelation function is simply the cosine transform9 of the spectral power den-
sity,

I∆t(∆t) =

∫ ∞
0

Iν(ν) cos(2πν∆t)dν ≡ Īν(∆t). (4.3)

where x̄ indicates the cosine transform of x. Applying this to the Taylor expansion, we get

ICMB
∆t,I (p̂,∆t) = f̄0(∆t) + f̄1(∆t)∆T +

1

2
f̄2(∆t)∆T 2 +

1

6
f̄3(∆t)∆T 3 (4.4)

Hence, we can compute the autocorrelation for any p̂,∆t if we simply precompute the four
position-independent functions {fi}.10 Evaluating the CMB autocorrelation at (p̂,∆t) is
hence reduced to being able to evaluate a sampled version of {fi} at (non-sample) position
∆t and the full-sky pixelized map ∆T at (non-pixel) position p̂. We perform both of these
using (bi-)cubic spline interpolation from numpy.ndimage.map coordinates.

The CMB has frequency-independent polarization, so the Q,U autocorrelation func-
tions can be derived from I by scaling them by the local Q,U polarization fractions. I.e.

ICMB
∆t,Q|U (p̂,∆t) = ICMB

∆t,I (p̂,∆t)
ICMB
ref,Q|U (p̂)

ICMB
ref,I (p̂)

.

The input CMB map ∆T,Q,U was simulated by drawing random, Gaussian T,E,B
and φ spherical harmonics coefficients from a typical CMB power spectrum as output by
CAMB11 and projecting them on a sky with 0.1◦ pixels in equirectangular (CAR) projection
using the libsharp Spherical Harmonics Transform library [13]. The lensing potential φ was
then used to lens the T, Q and U maps. We then added the 2.725 K CMB monopole to the
T component before Doppler boosting the sky12 to account for our motion relative to the
CMB, resulting in the CMB dipole.

9We implemented the cosine transform using a discrete cosine transform with a sample interval of 0.5 GHz
and a max frequency of 6.8 THz.

10If we had not needed to support the frequency response of the instrument, we could have avoided the
Taylor expansion by absorbing variation in T into rescaling of v. Sadly, PIXIE has significant damping at
high frequency, so this approach does not work.

11The spectrum used is provided in the file inputs/cl lensinput.dat.
12β = 0.0012301 towards ecliptic coordinates l = 171.646, b = −11.141.
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4.3.2 Dust

We model the dust as a modified blackbody with constant TD = 19.6K and β = 1.59, but
varying opacity. The observed spectrum is thus

Idust
ν,i (p̂, ν) = Ai(p̂)

hν3+βρ(ν)

c2

1

e
hν

kBTD − 1
≡ Ai(p̂)f0β(ν) (4.5)

for i ∈ {I,Q, U}. Here the prefactor Ai(p̂) encodes the position-dependent dust opacity and
polarization. Since T and β are constant, the frequency-dependent part of this spectrum is
already position-independent, so we don’t actually need to Taylor-expand in this case. We
just need to precompute a single autocorrelation shape which is rescaled for each pointing.

Idust
∆t,i (p̂,∆t) = Ai(p̂)f̄0β(∆t). (4.6)

This will need to be modified for more complicated dust models. If TD or β only change
slightly, then the Taylor expansion approach can be used. For more substantial variation, a
better approach may be to model it as several dust components, each with fixed parameters.

The input dust map was simulated using the Python Sky Model [14] code PySM of a
thermal dust-only sky evaluated at 600 GHz (with no bandpass). This was computed at
HEALPix Nside = 512, but the polarization map PySM produces is limited to 2◦ resolution
due to the limited resolution of the Planck polarized dust maps it uses as input. This
HEALPix map was then repixelized to 0.1◦ equirectangular (CAR) pixelization in ecliptic
coordinates by computing its spherical harmonics coefficients, projecting these onto CAR,
and then rotating from galactic to ecliptic coordinates using bicubic spline interpolation and
rotating the polarization vectors to compensate.

4.3.3 Other components

The results reported here are based on simulations that only include CMB and dust, but other
components such as synchrotron, free-free, CO, AME, etc. can be implemented in a similar
vein as above, as long as they can be approximated as a sum of constant-spectral-shape
components or can be Taylor-expanded to sufficient accuracy.

5 Beams and sidelobes

PIXIE will use multi-moded optics, as opposed to the single-moded optics common to many
imaging CMB instruments. For a single-moded system, the number of modes is fixed at
unity and the beam size depends on the etendue and observing wavelength (Ω ∝ λ2). For
a multi-moded system, the beam size is fixed and the number of modes depends on the
etendue and wavelength (Nmodes ∝ Ω/λ2). This has been tested in the lab for PIXIE, and
the beam was found to be frequency-independent above about 30 GHz [12, 15]. PIXIE’s beam
is also approximately top-hat shaped, but we will here approximate it with a Gaussian with
FWHM of 1.9◦.

As discussed in section 4.1, a frequency-independent beam is much cheaper to implement
than a frequency-dependent one as long as the spectrum maps are linear functions of a small
number of input maps. For our dust model this is simple - the spectrum is proportional to a
single spatially varying dust opacity map, so it is sufficient to apply the beam to that map.
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5.1 A small error in the CMB beam treatment

The CMB, on the other hand, is modeled as a 4th order Taylor expansion in ∆T , so in
this case we should smooth each power of ∆T individually. We currently do not do this.
Instead, we simply smooth the input ∆T , as one usually does when simulating CMB maps.
This reduces the accuracy of our Taylor expansion, and should be fixed in a future release.
However, this is not as serious as one might fear.

1. The main reason why we go to 4th order is the O(10−3) CMB dipole, but the dipole
is practically unaffected by the beam. The beam-relevant scales are much lower, at
O(10−5). The first incorrect correction term is the second order, which is down by
another such factor, giving a relative accuracy of 10−5 for T, E and B perturbations.
This is dwarfed by cosmic variance and noise for all PIXIE scales.

2. The same beam incorrect smoothing is used when evaluating the accuracy of the re-
covered maps. These errors therefore cancel, and the difference maps and error plots
in the results section are identical to those we would have gotten if this error had not
been made.

5.2 Sidelobes and asymmetric beams

So far we’ve assumed that the beam is isotropic and position-independent, so it can be
implemented by a one-time smoothing of the maps. A full implementation of general beam
shapes would be very expensive, as it requires an integral over (part of) the sky for every
sample generated. However, we can capture all the interesting effects of complicated beams by
expanding them as a series of symmetric beams with different pointing offsets. For example,
a slightly elliptical beam can be approximated as the sum of two slightly offset symmetric
beams. We implement this by replacing every evaluation of the sky autocorrelation function
with a sum over such evaluations for each beam component. Each such beam component is
defined by specifying ∆φ and ∆θ (see eq. (3.3)), a beam profile, and a Muller matrix which
encodes its intensity and leakage properties.

5.3 Simulator pseudo-python

The full source code of the simulator can be found in the classes OpticsSim and ReadoutSim

in pixie.py in https://github.com/amaurea/pixie, but the overall logic is summarized
in the pseudo-code below.

for each barrel, beam:

skies[barrel.sky, beam] = prepare sky(barrel.sky, beam)

# Time−ordered data is generated and output in units of scans
for each scan:

tod = zeros([ndet,nsamp∗nsub])
for each subsample in scan:

elements = calc orbital parameters(subsample)

for each detector:

for each beam seen through each barrel by detector:

p = calc pointing(elements , beam)

sky = skies[barrel.sky, beam]

# Compute the autocorrelation function at both

# dt=0 (DC) and dt=p.delay (offset)

– 13 –
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sky signal = calc sky autocorr(sky, p)

# Compute detector response to DC and offset sky Stokes parameters

det response = calc det response(det, barrel, p)

tod[det,subsample] = calc det signal(sky signal , det response)

# This uses Gaussian quadrature to integrate the subsamples

# in each sample (so the subsamples are not equi−spaced)
tod = downsample(tod, nsub)

output(tod)

6 PIXIE map-making

6.1 Assumptions

PIXIE’s observing strategy is designed to make mapmaking fast and accurate. To be as
general as possible we avoided depending on these features in the TOD simulator, but we
make use of them in the map-maker.

No DC signal. The unmodulated component (DC) of the signal changes on minute
timescales, which will not be recoverable due to correlated noise and the TOD highpass filter.
We ignore this component in the map-maker, and simply treat it as a part of the noise.

Single sky. We assume that the calibrator in single barrel mode is constant and unpo-
larized. That means that its effect can be taken into account simply by adding back the
calibrator spectrum in map space, and the map-maker itself can ignore it, and set ssky

B = 0.
We also assume that the sky itself is time-independent, so there is just a single sky to solve
for. Any deviations from this will be interpreted as noise.

In double barrel mode we assume that the two barrels see the same signal, and that
the V and U antisymmetric leakage terms can be ignored. Since I can’t be recovered in
double barrel mode, the two barrels are equivalent to a single barrel with no I but twice the
polarization signal, so we can again set ssky

B = 0 as long as we multiply the detector response
by 2. With this, equation (2.16) simplifies to

sdet(t) = G ·Rspin(t) · ssky(p̂t,∆t) (6.1)

where G is the detector-barrel response matrix G = g
4 [eI + eQ, eI − eQ,−eI + eQ,−eI − eQ]

and g = 1 in single barrel mode and g = 2 in double barrel mode.

Regular scanning pattern. PIXIE scans in great circles (rings) that pass through the
ecliptic poles, and both barrels are perfectly aligned. This means that the scanning motion
does not induce polarization rotation in ecliptic coordinates, and that all samples in a ring
will have constant ecliptic longitude, up to pole wrapping. The sampling rate and telescope
scan, spin and stroke speed are constant; and there is an integer number of samples per
stroke, strokes per spin and spins per scan. Using this, the data model simplifies further to

ssky
ri = G ·Rstok

(
4πi

Nspin

)
· ssky

([
l = l0 + r∆l, b = b0 +

2πi

Nscan

]
, Adelaytriangle

(
i

Nstroke

))
(6.2)

where r is the ring index and i is the sample inside the ring (such that the total sample number
in the time-ordered data is rNscan + i), where Nstroke = 1 920, Nspin = PspinNstroke = 15 360
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Figure 3. PIXIE’s scanning pattern is particularly simple in ecliptic (extended) plate carrée (CAR)
coordinates, where each scan moves at constant pixel velocity purely along the latidude axis. This
allows an exact correspondence between samples and pixels. 3 example scans separated by 7.6 days
are as black lines. The extended CAR coordinates here cover two mirror images of the full sky in
order to show full scans without breaks.

and Nscan = PscanNspin = 5 898 240 are the number of samples per scan, spin and stroke
respectively, and where Pspin = 8 and Pscan = 384 are the number of strokes per spin and
spins per scan respectively.

Simple noise. For simplicity, we will also assume that the detectors have independent
white noise of equal amplitude. Neither of these are necessary, and can be easily relaxed in the
future. Section 8.3 discusses the effect of correlated (1/f) noise on the PIXIE spectral maps.

With the nominal rates of 1024 detector samples per mirror stroke, the Fourier transform
returns 512 synthesized frequency channels each 14.4 GHz wide, extending from DC to 7.4
THz. Scattering filters in the optical path limit the response at frequencies above 6 THz.
Dispersion within the FTS from the finite spread of angles within the beam washes out the
fringe amplitude at comparable frequencies. Synthesized channels at frequencies above ∼6
THz thus contain noise but no signal, providing a convenient check of the instrument noise.

6.2 Orthogonalization

It would have been very convenient if the stroke, spin and scan motions were orthogonal, so
that the telescope didn’t spin during a stroke and didn’t scan during a spin. That would
allow us to demodulate each of them independently. Rather than have stroke, spin and
pointing change smoothly during each scan we would have Pscan pointings (corresponding
to our output pixels), each with Pspin spin angles measured, and for each of those Ndelay

mirror positions.

Figure 4 illustrates the situation. In the 3-dimensional space of latitude, spin angle and
mirror position (corresponding to the horizontal, vertical and color axis in the figure), the
scanning pattern traces out a skewed grid (A) instead of the orthogonal grid that would be
convenient (E). However, as long as our signal is well-sampled in all directions in the grid we
can use the samples we have to interpolate to the orthogonal grid we wish we had.
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Figure 4. Orthogonalization of the scan, spin and stroke motions. PIXIE scans in circles on the sky,
so the signal is periodic during a scan. It also spins and strokes. In isolation the signal would also be a
periodic function of the spin angle and mirror stroke position, but because PIXIE scans while it spins,
and spins while the mirror strokes these dimensions get mixed and the periodicity is lost on all but
the scan timescale. A: illustration of the mixing of the stroke (color), spin (x-axis) and scan (y-axis)
dimensions in the PIXIE scanning pattern. B: a subset of points with the same stroke position and
spin angle from periodic functions of the scan angle. The open circles represent the positions at which
we have a measurement, while the filled ones are the positions we want to estimate. The red curve
represents the smoothly varying signal inferred from the open points, which is used to interpolate the
values at the filled points. The effect of this is to undo the scanning motion during each spin. Note
that the red curve has its own x axis corresponding to the time-ordered data values. C: spin and
stroke are still mixed. D: we Fourier-interpolate between points with the same stroke position within
a spin to undo the spin motion during each stroke. E: the scan, spin and stroke are now unmixed.
The resulting timestream simulates what we would see if PIXIE stood still while the mirror strokes,
then instantanously rotates to a new spin angle, strokes again, etc. and then instantanously moves
to a new scan angle when the spin is done. F: the signal is spin-0 (I) or spin-2 (Q,U), so we can
shorten the interpolation distance and decrease the pixel size by mapping the 180◦ − 360◦ interval to
the 0◦–180◦ interval in spin angle.

We start by undoing the effect of the scan motion during each scan (and stroke) by
splitting our samples into groups with the same spin angle and mirror position. Letting di be
the i’th sample of the time-ordered data d for a single detector for a single ring, we split into
groups such that sample (pixel) p in group g ∈ {0, Nspin−1} corresponds to i = pNspin+g, and
let the notation dps ≡ di=pNspin+g. Because the shorter time-scale parameters are constant
within each group, they see a signal that changes smoothly as the telescope scans over the
beam-smoothed sky (i.e. as p changes while g is fixed), and this makes it easy to interpolate.
Since the ring time-ordered data as a whole is periodic each of these evenly sampled ring
subsets is also periodic, so we can interpolate via Fourier shifting: given an array a containing
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N samples and a discrete Fourier transform F , an array a′ equal to a shifted downwards by
∆ samples is given by

a′j = aj+∆ = Ψ(∆)jkak ≡ F−1
jf e

−2πif∆/NFfkak (6.3)

which defines the Fourier-shift matrix Ψ(∆). Using this, the scan drift corrected tod d′ is
given by:

sshift
rpg = Ψ

(
g/Nspin

)
pp′

sdet
rp′g (6.4)

corresponding to panel C in the figure. This involves interpolating a distance of up to
1
2 ·360◦ ·Nspin/Nscan = 0.46875◦ on the sky, of about half a PIXIE FWHM. We can halve the
interpolation distance by exploiting the spin-2 nature of our signal: only half a spin rotation
is needed to return to the same configuration (panel F). This spin-2 scan drift correction is
identical to the one above, but with half the normal value of Nspin.

Undoing the effect of PIXIE’s spin during the mirror motion follows the same logic on
shorter time scales. We now group by mirror position (panel D) such that

sort
rsδ = Ψ

(
δ/Nstroke

)
ss′

sshift
rs′δ (6.5)

with i = sNstroke + δ, s being the number of completed strokes and δ being the index in the
mirror displacement pattern.

The orthogonalized equivalent to eq. (6.2) is

sort
rpsδ = GRstok

(
4πs

Pspin

)
ssky
rpδ with ssky

rpδ = ssky

(
[lr, bp], Adelaytriangle

(
δ

Nstroke

))
(6.6)

and where lr = l0 + r∆l is the longitude of ring r, bp = b0 + 2πp
Pscan

is the latitude of pixel p
along the ring.

6.3 Spin demodulation

Now that position, spin angle and mirror position are independent, we can handle each of
them separately. We start by demodulating the spin. Suppressing the indices r, p and δ to
avoid excessive verbosity, and expanding ssky = [I,Q, U ], equation (6.6) evaluates to

sort
ds =

[
GdII + (GdQ − iGdU )e4πis/Pspin(Q+ iU)

]
(6.7)

This is just a weighted sum of 3 orthogonal Fourier modes, and can be straightforwardly
inverted as

I = 〈G−1
dI s

ort
ds 〉ds Q = Re〈G−1

dQe
−4πis/Pspinsort

ds 〉ds U = Im〈G−1
dQe
−4πis/Pspinsort

ds 〉ds (6.8)

which is simply the gain-correct 0th Fourier mode and real and imaginary part of the 2nd
Fourier mode.

6.4 Frequency response correction

PIXIE’s response drops off as we approach 6 GHz (see section 2.4). We correct for this by
dividing each frequency bin by the instrument frequency response function ρ(ν) evaluated at
the bin center.
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6.5 Mapmaker pseudo-python

The full source code of the map-maker can be found in the programs tod2ring.py and
ring2map.py in https://github.com/amaurea/pixie, but the overall logic is summarized
in the pseudo-code below.

map = zeros([nfreq,{I,Q,U},nlat,nlon])
hits = zeros([nlat,nlon])

for each scan:

d = unapply tod filter(scan.tod)

d = unapply sample window(d)

# Unapply scan drift during spin

if spin == 1:

d = d.reshape(ndet,scanspins ,spinstrokes∗strokesamps)
d = fourier shift(d, range(d.shape[−1])/d.shape[−1], axis=1)

else: # spin−2− could be modified to double resolution
d = d.reshape(ndet,scanspins∗2,spinstrokes∗strokesamps/2)
dhalf = fourier shift(d, range(d.shape[−1])/d.shape[−1], axis=1)
d[:,0::2], d[:,1::2] = dhalf, dhalf

# Unapply scan and spin drift during stroke

d = d.reshape(ndet,scanspins∗spinstrokes ,strokesamps)
d = fourier shift(d, range(d.shape[−1])/d.shape[−1], axis=1)
# Decompose spin modulation into I (spin−0 part) and Q,U (spin−2 part)
d = d.reshape(ndet,scanspins ,spinstrokes ,strokesamps)

d = fft(d, axis=2)

# Transform from autocorrelation into spectrum

d = [d[:,:,0],d[:,:,2].real∗2,d[:,:,2].imag∗2]
d = fft(d, axis=3)∗2/strokesamps/dfreq
# Take into account the detector polarization orientation and frequency response

d = unapply detector response(d)

add to sky(map, scan.lon, d)

add to sky(hits, scan.lon, 1)

map /= hits

output(map)

7 Performance

The software was tested on the Scinet GPC cluster. On a typical node with an 8-core Intel
Xeon 2.5 GHz processor the simulator has a run time of about Tsim = 81 sec·NscanNsub/Ncore,
and the map-maker has Tmap = 23 sec ·Nscan/Ncore. A 192-scan run with 9 subsamples per
sample, like the ones used in this article therefore takes about 40 CPU-hours. The full PIXIE
scanning pattern, with 1369.7 scans per year, would take 286 CPU-hours per simulated year.

The large speed difference between the simulator and map-maker is partially due to
the overhead from high spatial and spectral resolution simulations, which are necessary for
investigating sub-pixel and sub-sample biases. If one is not interested in these, then disabling
pixel window integration results in a factor ∼ 7 speedup. Further speedups would be possible
in a simulator that operates at the same spatial and spectral resolution as the final maps, such
as the spectral cube design needed for spatially and spectrally varying beams (see section 4.1).

Since each scan takes 384 minutes to collect but only 23 CPU-seconds to map with this
mapmaker, a single core would easily keep up with the data down-link from the instrument.
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Figure 5. The input beam-smoothed sky model evaluated at 58 GHz in the CAR projection in
ecliptic coordinates. The color range is ±400 kJy/sr in intentisty (I) and ±200 Jy/sr in polarization
(P), except for dust I where it is ±5 kJy/sr. The monopole has been subtracted in each map for
plotting purposes.

8 Results

We generated a simple two-component CMB + dust sky model as described in section 4.3.1–
4.3.2. A 58 GHz slice of this model can be seen in figure 5. We then simulated scanning
across this model with the accelerated scanning pattern described in section 3, which would
result in 384 scans per orbit. However, since the scans are great circles, only half an orbit is
needed to cover the whole sky. Our simulations therefore consist of 192 scans, each consisting
of 5898240 samples for each of 4 detectors at 256 Hz.

Figure 6 shows an example of what the time-ordered data looks like on various time
scales, here for a noiseless single detector, in both single and double barrel mode. The stroke
and spin modulation makes the TOD quite different from that of standard CMB experiments,
which have a smoothly varying signal on short time scales.

Figure 7 shows the corresponding maps we get after running these simulated scans
through the mapmaker, compared to the input model at 58 GHz evaluated at the center of
each pixel. Even under these idealized conditions the residual is not zero, though it is small:
500 mJy/sr for dust and much less for the CMB in T, compared to the 100 MJy/sr CMB
monopole; and 5 mJy/sr in P, compared to 200 Jy/sr for the signal. This represents a −83dB
error in T and −46dB in P. Figure 8 shows the signal and bias spectra for a single input
pixel, compared to the expected instrument noise. These deviations are due to subsample
effects, and would also be expected when analyzing real data. See appendix A for details,
but for now it suffices to note that these biases are many orders of magnitude smaller than
the instrument noise floor.

With the mapmaker successfully recovering the input signal in this ideal case, we next
study the effect of some common and less common instrument imperfections on PIXIE’s
performance.
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Figure 6. Noiseless simulated PIXIE time-ordered data for the Lx detector on various time scales in
single (red) and double (green) barrel observing mode. Top left : a whole great-circle scan of the sky,
starting at ecliptic coordinates l = 0◦, b = 0◦ and scanning in longitude. The two peaks are crossings
of the galactic plane. Top right : zoom on the first 10 minutes. We see that the signal is modulated
on 3 time-scales: the sky signal changes on minute time-scales due to the scan; the polarization is
modulated on 15 second time-scales due to PIXIE’s spin; and the signal is modulated on second
time-scales by the mirror stroke. Bottom left : zoom on a single PIXIE spin. The slowly changing
baseline is the DC signal, which PIXIE will not attempt to measure due to its susceptibility to 1/f
noise. Bottom right : zoom on a single mirror half-stroke, centered on ∆t = 0. This is effectively a
plot of the electric field’s autocorrelation function at this position.

8.1 Intensity to polarization leakage

To first order, PIXIE is immune to intensity to polarization (I-to-P) leakage because any
term sourced by I is not modulated as a spin-2 field as the telescope spins, and is therefore
not classified as polarization. We confirm this in simulations, where even 100% I-to-P leakage
in the optics have no effect on the result.

However, this spin-separation of polarization can itself become a source of polarization
leakage. If the telescope barrel is not perfectly aligned with PIXIE’s spin axis, then the beam
will trace small circles in the sky during each spin. Any local intensity quadrupole around
the point PIXIE is pointing at will show up as a spin-2 modulated signal in the time-ordered
data, and will hence be interpreted as polarization. Alternatively, the same thing can happen
if the barrel is correctly aligned, but the beam is elliptical.

We investigated ellipticity-induced leakage for a point source in figure 9 and for a cmb
+ dust map in figure 10, both for a highly elliptical beam with a flattening of 0.5. For
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Figure 7. Simulator/map-maker spatial bias test. Top row : the beam-smoothed input map at 58
GHz. The color range is ±400 kJy/sr for I and ±200 Jy/sr for P. Middle row : the output map at
58 GHz. Bottom row : difference between the mapmaking output maps and input maps at the same
frequency for a noise-less simulation. The color range is ±500 mJy/sr for I and ±5 mJy/sr for P.
These represent the bias of the simulator-map-maker combination. The biases are small compared to
the instrument noise.

each detector in isolation, the ellipticity results in a strong quadrupolar leakage pattern that
completely dwarfs the intrinsic polarization. However, when combining detectors to make a
full map this leakage is doubly canceled. Firstly, because the two detectors in a horn have the
same I response but opposite polarization response, the leakage from each detector cancels.
And secondly, the left and right horn also differ by an overall sign in their polarization
sensitivity, leading to a second cancellation. All in all, I-to-P leakage is a third order effect
in PIXIE, and is unlikely to be an important systemaic effect.

8.2 Beam circularization

PIXIE’s spin around the boresight also circularizes the beam. In the ideal orthogonal case,
where the telescope does not scan or stroke while spinning, every pixel would be observed
equally at every spin angle, leading to perfect circularization. In practice, though, we need to
rely on interpolation to simulate an orthogonal scanning pattern, and this relies on the signal
changing smoothly as the spin angle changes in 22.5◦ steps (since there are 16 half-strokes
per full spin).13,14 But a very long and thin beam could in theory sweep over a small feature
in far shorter time than this. This would create complicated spatially dependent artifacts in
the autocorrelation function.

Furthermore, even if the orthogonalization went perfectly, it would still only result in 16
discrete, evenly spaced spin angles15 per pixel. The resulting beam is then the average over

13This is for spin-2 orthogonalization. With spin-1, we get 8 full strokes per spin and hence 45◦ steps.
14While the autocorrelation function repeats every quarter-stroke, every other quarter-stroke is mirrored, so

they do not form an equi-spaced dataset suitable for Fourier interpolation when orthogonalizing. Otherwise,
we could have gotten both 32 orthogonalized spin angles would have been possible.

15When using high-resolution mapping (see panel F in figure 4) this reduces to 8.
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Figure 8. Simulator/map-maker spectral bias test. Recovered I and Q spectra and their errors for
a noiseless simulation with 9 Gaussian quadrature subsamples per sample, compared to the PIXIE
noise level. This is all for a single pixel at l = 0◦,b = 0◦. The U spectrum is similar to the Q one, but
was left out to avoid clutter. The bias is ∼ 100 times lower than the noise for ν < 500 GHz and ∼ 5
times lower than the noise at the worst point at 2 THz. At 200 GHz the bias is ∼ 10−10 of the signal
in I and ∼ 10−6 of the signal in P. These errors are independent of observing mode.

these 16 orientations, and so would not be perfectly radially symmetric, but would instead
have an 16-fold angular symmetry.

These effects are illustrated in figure 11, for a multimodal beam with two circular
components separated by 10◦. The resulting beam is not circular, and has quite complicated
sub-structure.

How important are these limitations in practice? As we can see in figure 9, even for a
beam with an unrealistically large flattening of 0.5 any residual non-circularity is low enough
that it is drowned out by sub-pixel effects.

8.3 Correlated noise

PIXIE’s detector readout is expected to have a slowly varying 1/f noise component, with an
fknee ∼ 1/hour or longer. 1/f noise usually manifests as correlated structures in the map, for
example striping in the scanning direction. In PIXIE’s case, though, we get a measurement
of the spectrum every 7.5 seconds as the mirror strokes. As long as it is purely additive,
slow drifts can be thought of as low-order polynomials vs mirror position for a single mirror
stroke. As such, they are Fourier-transformed to low optical frequencies and affect only
the DC component, or at worst the first few bins of the synthesized spectra, and do not
propagate to spatial striping in the maps. We therefore expect PIXIE’s maps/spectra to
have only white noise.

To test this we simulated 1/f noise with power (1 + [f/fknee]
α)σ2, with fknee = 0.1Hz

(hundreds of times higher than expected, but slower than the stroke frequency), α = −3
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Figure 9. Simulation of a highly elliptical beam with a flattening of 0.5 observing a point source
with 10% polarization in the Q direction. The beam is built up from 5 identical, circular, gaussian
components with FWHM of 1.9 deg offset vertically with an interval of 0.475 deg. Left : Map of
the instantaneous beam profile, with axis units of degrees. Middle: The PIXIE scanning pattern
circularizes the beam efficiently, at the cost of a slight increase in beam size compared to the non-
elliptical case. Beam ellipticity also introduces polarization leakage due to the spin-2 nature of an
elliptical beam, but this is doubly suppressed in PIXIE. First, it’s cancelled when combining detectors
in each horn unless the two detectors have different beams, and secondly, it’s cancelled when combining
the signal from the two horns unless the two horns have different beams. In this simulation we used
an unrealistically high 10% mismatch between x- and y-oriented detectors in each horn, making the
first cancellation only 90% efficient. The Q and U color scale is 10% of the I color scale here. Right :
plotting the output beam in a restricted color range reveals a ringing pattern in the scan direction
with amplitude 2.3 · 10−3r/1◦ relative to the beam peak, where r is the distance from beam center.
This also appears for a circular input beam, and is a manifestation of the subsample effects described
in section A. The ringing makes it hard to quantify the amount of residual non-circularity, except by
saying that it’s . 2.3 · 10−3 of the circular component.

and σ = 83
√

sfW/m2/sr per detector. As figure 12 shows, this results in noise that white
both spatially and spectrally. This confirms our expectation that (additive) correlated noise
should not be an issue for PIXIE.

8.4 Sub-pixel effects

Anisotropy on scales smaller than PIXIE’s beam, including CMB anisotropy as well as point
sources, will affect the map making. Scanning the beams across the sky causes point sources
to enter or exit the beam during the course of a single mirror stroke, creating signal variations
on time scales short compared to the mirror stroke. Signals on short time scales (high
spatial frequencies) are Fourier-transformed to high frequencies in the synthesized spectra
and primarily affect channels above 6 THz containing little true sky signal. See appendix A
a fuller discussion.

8.5 Mirror jitter

In PIXIE’s map-making we model the interferometer path delay as changing at a constant
rate in a triangle wave pattern. But in a real experiment the mirror is a physical device that
cannot turn around instantly, and which will end up vibrating and jittering at some level.
The exact performance that can be expected from the mirror is still uncertain, but according
to [11], a jitter in the path difference of ∼ 30nm

√
s has been achieved.

We simulated jitter at this level by adding noise consisting of a sum of 100 sine waves
with random periods logarithmically distributed in the range 0.25 Hz to 1000 Hz with power

– 23 –



J
C
A
P
0
4
(
2
0
1
9
)
0
1
9

Q U

Lx

Lx+Ly

All

Figure 10. As figure 9, but for a cmb+dust simulation. Top: Q and U maps based on only the Lx
detector. The maps are dominated by O(1) leakage of small-scale I. Middle: When coadding the Lx
and Ly detectors the leakage is greatly reduced. If the two detectors have the same beam (as would be
expected in the real instrument), then this cancellation would be perfect. In our simulation there is
a 10% mismatch, so the leakage is only suppressed by 90%. Bottom: map based on all four detectors
(Lx+Ly+Rx+Ry). Because we assumed the same beams for the detectors in the left and right horns,
the leakage cancels. Leakage would only survive if both the detectors in a horn are mismatched and
the horns themselves are mismatched. The color scale is ±400 kJy/sr in I and ±500 Jy/sr in Q and U.

Input beam Output I Output Q Output U

Figure 11. Beam circularization failure for a multimodal input beam. Each component has a FWHM
of 1.9◦, and they are separated by 10◦. One would expect the off-center beam component to be
smoothed into a smooth circle, but due to the limited amount of spin angles after orthogonalization
the result is a dashed circle. Additionally, the sharp angular dependence of the beam results in
interpolation failure during orthogonalization, which is responsible for the striping in the scanning
direction. This failure mode is not relevant for realistic PIXIE beams.

proportional to f−1 and a combined RMS of 30nm
√

s to the path delay in the simulator. This
is a rough approximation of noise that is damped on long timescales by the mirror control
system and on short timescales by the inertia of the mirror. The resulting spectra are shown
in figure 13. Jitter both smoothes the autocorrelation function and acts as an extra noise
component, but as the figure shows the latter dominates for PIXIE.
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Figure 12. Top left : example noise realization with 1/f-noise with fknee = 0.1 Hz, α = −3 and
σ = 83

√
s fW/m2/sr per detector. This fknee is several orders of magntiude larger PIXIE’s expected

value, resulting in strongly non-white noise on > 10 s time scales. Top right : the resulting noise
RMS is 92Jy/sr per 15 GHz bin per 1◦2 pixel in I and 128Jy/sr in Q and U. These numbers take
into account that our actual bins are slightly smaller than 15 GHz, and that our pixels are slightly
smaller than 1◦2. Despite the high fknee, the resulting spectrum noise is indistinguishable from white.
The spectrum (and map) has been rescaled to correspond to 15 months of data. Bottom: map noise
resulting from single barrel mapmaking with this noise sim. The color scale is ±500 Jy/sr. Like in
the spectrum, the map noise is practically white.
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Figure 13. The effect of jitter in the mirror position. Left : We added noise consisting of a sum
of 100 sine waves with random periods logarithmically distributed in the range 0.25 Hz to 1000 Hz
with power proportional to f−1 and a combined RMS of 30nm

√
s. This is a rough approximation of

noise that is damped on long timescales by the mirror control system and on short timescales by the
inertia of the mirror. An example of such a noise realization is shown in red, and compared to the
mirror average displacement per second divided by 105. Right : The average single-pixel spectrum
error caused by this jitter compared to the signal, PIXIE noise and subpixel/subsample bias. A
mirror jitter of the form and magnitude simulated here would be the largest of the systematic effects
investigated in this paper. This plot is for single barrel mode, but the jitter noise curve in polarization
is the same in double barrel mode.
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The jitter shows up as an extra white noise component in the spectra, and unlike the
other effects we have investigated, this contribution to the noise is not negligible. In total
intensity it is about half as as high as the expected instrument noise, while it’s about two
orders of magnitude below the noise in polarization. The jitter level at which the jitter
noise and instrument noise are equal are 0.10µm

√
s for I, 2.2µm

√
s for P (single barrel) and

3.1µm
√

s for P (double barrel).
One might hope that double barrel mode would be less affected by jitter noise, as it

cancels the huge total intensity signal, and hence could prevent it from contributing to this
noise term. However, the opposite polarization sign for the two detectors in each horn cancels
the total intensity contribution to the polarization jitter noise even in single barrel mode.
Mirror jitter is therefore approximately as important in double barrel mode.16 Ensuring a
low mirror jitter should be a high priority in the PIXIE hardware design.

9 Conclusion

We have developed time-ordered data simulator and map-maker for the proposed PIXIE
experiment, and used them to test the impact of subpixel bias, intensity to polarization
leakage, beam ellipticity/off-axis pointing, correlated noise and mirror jitter. We find PIXIE
to be remarkably robust against all these effects, with the exception of mirror jitter, which is
a potential concern. At jitter levels above 0.10µm

√
s for I or 3.1µm

√
s for P, the jitter rather

than detector performance becomes the limiting factor for the instrument’s sensitivity.
This simulation framework was developed for PIXIE, but can be adapted for any similar

CMB satellite mission operating with a Fourier transform spectrometer.
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A Sub-pixel effects

As we saw in section 8, even ideal, noiseless simulations result in low-level deviation from the
input, as seen in map-space in figure 7 and in the spectrum in figure 8.

We believe that these biases are almost entirely due to sub-pixel effects. During the
orthoganalization procedure (section 6.2) interpolation is needed to go from the observed
samples to the idealized, orthogonal samples. The map-maker uses Fourier-interpolation
to do this, but the simulator uses bicubic spline interpolation to generate samples that fall
between input pixels. Hence, the simulator and map-maker are making different assumptions
about how the signal behaves on sub-pixel scales, and this mismatch leads to map → tod
and tod → map not being exact inverses of each other. Figure 14 demonstrates this effect
for a simpler 1-dimensional case.

Sub-pixel errors also occur during the sample window deconvolution. The sample win-
dow is simulated by integrating sub-samples using gaussian quadrature, which amounts to
assuming that the sub-sample behavior is described by a low-order polynomial. However, the

16Double barrel mode is more robust to I-to-P leakage, so in the presence of uncancelled I-to-P leakage, the
single barrel polarization jitter noise would increase above the level indicated in figure 13, while the double
barrel jitter noise would stay as it is. So in that case double barrel mode would be an improvement.
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Figure 14. 1-dimensional toy example of sub-pixel mismatch bias. Left : the input data set, which
is a densely sampled sine wave with 25 points per wavelength. Middle: two models for the sub-pixel
behavior of the data set (Fourier and spline interpolation) disagree slightly. Right : the residual after
shifting the dataset right by half a sample (i.e. half-way between the red points in the middle panel)
using Fourier (red) and spline (green) interpolation, and then back again using Fourier interpolation
in both cases. When the forwards and backwards methods do not match, the result is biased.
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Figure 15. The effect of sample window and Fourier shift distance on the mapmaking bias. Both of
these are examples of sub-pixel bias. The sample window error comes from the mismatch between the
gaussian quadrature that is used to integrate the sample window and the Fourier-space deconvolution
that is used to remove it. It rises with frequency and is a ∼ 10−7 error at 1 THz. The Fourier
shift error comes from the mismatch between the high-res bicubic sub-pixel behavior of the sky in
the simulator and the bandlimited Fourier model used in the map-maker. It has a surprisingly large
dependence on the interpolation distance. Spin-1 Fourier shifting has twice the interpolation distance
of Spin-2 Fourier shifting, but 103 − 104 times as large a bias. The red curve shows the error for a
monopole-only sky when using no sample window, demonstrating that aside from sub-pixel biases the
accuracy is close to double precision float error. The relative Q error is high at low frequency because
the signal itself becomes very small there. The feature at 90 GHz is due to Q changing sign there for
this pixel.

deconvolution is done by dividing by a sample window in Fourier space, which assumes that
the sub-pixel behavior is given by sines and cosines bandlimited by the sampling frequency.

We investigate the effect of these sub-pixel effects in figure 15, where we first remove
the sample window (both in simulation and map-making), and then make the map spatially
homogeneous to eliminate sub-pixel effects. After removing both of these, we are left with a
relative error of ∼ 10−15, which we attribute to floating point errors.
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These sub-pixel effects would not have appeared if the simulator and map-maker both
made the same assumptions about sub-pixel behavior, which would have been the case for
a simpler simulator. That would, however, have been misleading. The real sky is neither
Fourier-interpolated nor bicubic-interpolated, and so this kind of sub-pixel mismatch is un-
avoidable when analyzing actual data. The mismatch between Fourier-interpolation and
bicubic interpolation is not exactly the same as what one can expect for the real data, but
it is a good approximation for it.
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